If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2=8=3t
We move all terms to the left:
3t^2-(8)=0
a = 3; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·3·(-8)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*3}=\frac{0-4\sqrt{6}}{6} =-\frac{4\sqrt{6}}{6} =-\frac{2\sqrt{6}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*3}=\frac{0+4\sqrt{6}}{6} =\frac{4\sqrt{6}}{6} =\frac{2\sqrt{6}}{3} $
| 10x+(6x-3)+141=180 | | 50=5x+15+5 | | -10-8n=10 | | -9=6+n | | 7x+3x+9x=540 | | z+-281=342 | | Y^2×16y-720=0 | | 3/b-1=3 | | -3x+8-3x-3=41 | | -2=s-11 | | 3(k−14)=18 | | 175+12n-120=125+14n-112 | | 5p-8p=-3 | | -v/2+12=9 | | -2(4-2n)+7n=6n+2 | | 4=t/3+6 | | 25+7m=109 | | -v/5-11=-11 | | p−9=3p+9 | | 60=6(d+12) | | 14w=7w+63 | | 5-1/2x=1/4x+2 | | 12-2a=8 | | 11.3-0.6x=8 | | -u/4+18=16 | | 6(1+a)=66 | | 4/5x11/2=x | | x=6(1)-14 | | 48=-6(s+2) | | 6x+9x=66 | | -9(-8x+-8)=12x+60x+-6+3 | | -10t+17=27 |